A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. | LitMetric

Automatic retinal blood vessel segmentation is a key link in the diagnosis of ophthalmic diseases. Recent deep learning methods have achieved high accuracy in vessel segmentation but still face challenges in maintaining vascular structural connectivity. Therefore, this paper proposes a novel retinal blood vessel segmentation strategy that includes three stages: vessel structure detection, vessel branch extraction and broken vessel segment reconnection. First, we propose a multiscale linear structure detection network (MS-LSDNet), which improves the detection ability of fine blood vessels by learning the types of rich hierarchical features. In addition, to maintain the connectivity of the vascular structure in the process of binarization of the vascular probability map, an adaptive hysteresis threshold method for vascular extraction is proposed. Finally, we propose a vascular tree structure reconstruction algorithm based on a geometric skeleton to connect the broken vessel segments. Experimental results on three publicly available datasets show that compared with current state-of-the-art algorithms, our strategy effectively maintains the connectivity of retinal vascular tree structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106416DOI Listing

Publication Analysis

Top Keywords

vessel segmentation
16
retinal blood
12
blood vessel
12
vessel
8
geometric skeleton
8
structure detection
8
broken vessel
8
vascular tree
8
tree structure
8
vascular
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!