This paper aims to highlight how to reduce medication errors through the implementation of human factors science to the design features of medication containers. Despite efforts to employ automation for increased safety and decreased workload, medication administration in hospital wards is still heavily dependent on human operators (pharmacists, nurses, physicians, etc.). Improving this multi-step process requires its being studied and designed as an interface in a complex socio-technical system. Human factors engineering, also known as ergonomics, involves designing socio-technical systems to improve overall system performance, and reduces the risk of system, and in particular, operator, failures. The incorporation of human factors principles into the design of the work environment and tools that are in use during medication administration could improve this process. During periods of high workload, the cognitive effort necessary to work through a very demanding process may overwhelm even expert operators. In such conditions, the entire system should facilitate the human operator's high level of performance. Regarding medications, clinicians should be provided with as many perceptual cues as possible to facilitate medication identification. Neglecting the shape of the container as one of the features that differentiates between classes of medications is a lost opportunity to use a helpful characteristic, and medication administration failures that happen in the absence of such intentional design arise from "designer error" rather than "user error". Guidelines that define a container's shape for each class of medication would compel pharmaceutical manufacturers to be compatible and would eliminate the confusion that arises when a hospital changes the supplier of a given medication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-022-01905-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!