Cu-mediated turn-on fluorescence biosensor based on DNA-templated silver nanoclusters for label-free and sensitive detection of adenosine triphosphate.

Mikrochim Acta

Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.

Published: December 2022

A Cu-mediated turn-on fluorescence biosensor based on the DNA-templated green-emitting silver nanoclusters (DNA@g-AgNCs) was developed for label-free and sensitive detection of adenosine 5'-triphosphate (ATP). Cu was able to quench the bright green fluorescence of DNA@g-AgNCs because of the coordination and photoinduced electron transfer between DNA@g-AgNCs and Cu. Therefore, a unique and effective fluorescence biosensor can be constructed with the formation of DNA@g-AgNCs/Cu/ATP ternary-competition system. With the introduction of ATP, the DNA@g-AgNCs/Cu fluorescence sensing system will be disrupted and the fluorescence of DNA@g-AgNCs was recovered due to higher affinity of ATP towards Cu. On the basis of this feature, the DNA@g-AgNCs/Cu fluorescence sensing system demonstrated quantitative determination of ATP in the range 0.05 - 3 μM and a detection limit of 16 nM. Moreover, the fluorescence sensing system was successfully applied to the quantitative determination of ATP in human urine and serum samples with recoveries ranging from 98.6 to 106.5%, showing great promise to provide  a label-free, cost-efficient, and rapid platform for ATP-related clinical disease diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-022-05617-7DOI Listing

Publication Analysis

Top Keywords

fluorescence biosensor
12
fluorescence sensing
12
sensing system
12
fluorescence
8
turn-on fluorescence
8
biosensor based
8
based dna-templated
8
silver nanoclusters
8
label-free sensitive
8
sensitive detection
8

Similar Publications

Highly sensitive and selective detection of SARS-CoV-2 spike protein S1 using optically-active nanocomposite-coated melt-blown masks.

Anal Chim Acta

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:

Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.

View Article and Find Full Text PDF

Carbon dots doped with metals and non-metals have gained much popularity due to the enhancement in their optical and electronic properties. In this study, polyethyleneimine-functionalized transition metal (nickel or copper) doped carbon dots (CD, NiCD and CuCD) were synthesized through hydrothermal method. The carbon dots exhibited a blue fluorescence at 470 nm when excited at 350 nm.

View Article and Find Full Text PDF

The development of rapid and multiplexed point-of-care (POC) diagnostic tools is vital for the prevention and control of sexually transmitted diseases (STIs). Here, we developed a POC-comprehensive Thermococcus thioreducensArgonaute (TtrAgo)-mediated nucleic acid detection system (POC-CANDY) and palm-sized portable detection device "Owl-1" for the simultaneous detection of Ureaplasma urealyticum, Chlamydia trachomatis, Neisseria gonorrhoeae, human papillomavirus types 16/18 and antibiotic resistance molecular markers [tetM, and gyrA mutation (S91F)]. Using recombinase polymerase amplification (RPA), the optimized POC-CANDY could finish the whole detection procedure within 55 min and achieve a limit of detection of 10 copies/μL.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Identification and monitoring of cell heterogeneity from plasmid recombination during limonene production.

Appl Microbiol Biotechnol

January 2025

NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Kent Ridge, 117456, Singapore.

Detecting alterations in plasmid structures is often performed using conventional molecular biology. However, these methods are laborious and time-consuming for studying the conditions inducing these mutations, which prevent real-time access to cell heterogeneity during bioproduction. In this work, we propose combining both flow cytometry and fluorescence-activated cell sorting, integrated with mechanistic modelling to study conditions that lead to plasmid recombination using a limonene-producing microbial system as a case study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!