Strand-specific RNA-seq is a powerful tool for the discovery of novel transcripts, annotation of genomes, and profiling of gene expression levels. Tn5 transposase has been successfully applied in massive-scale sequencing projects; in particular, Tn5 adaptor modification is used in epigenetics, genomic structure, and chromatin visualization. We developed a novel dU-adaptor-assembled Tn5-mediated strand-specific RNA-sequencing protocol and compared this method with the leading dUTP method in terms of experimental procedure and multiple quality metrics of the generated libraries. The results showed that the dU-Tn5 method is easy to operate and generates a strand-specific RNA-seq library of comparable quality considering library complexity, strand-specificity, evenness, and continuity of annotated transcript coverage. We also evaluated the performance of the dU-Tn5 method in identifying nitrogen-responsive protein-coding genes and long non-coding RNAs in soybean roots. The results indicated that ~62-70% of differentially expressed genes detected from conventional libraries were also detected in dU-Tn5 libraries, indicating good agreement of our method with the current standard; moreover, their fold-changes were highly correlated (R>0.9). Thus, our method provides a promising 'do-it-yourself' stranded RNA-seq procedure for gene expression profiling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac515 | DOI Listing |
Nucleic Acids Res
December 2024
MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages.
View Article and Find Full Text PDFRNA Biol
January 2024
College of Life Sciences, Beijing Normal University, Beijing, China.
As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2.
View Article and Find Full Text PDFTrop Biomed
September 2024
Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
This study explored the transcriptome differences in Fasciola hepatica at different developmental stages and identified functional genes related to growth and development during juvenile stages. DNBSEQ eukaryotic strand-specific transcriptome resequencing technology was used to sequence the transcriptomes of Fasciola hepatica eggs, juveniles, and adults. Additionally, the genes that were highly expressed during the juvenile stage were validated using qRT-PCR.
View Article and Find Full Text PDFGenomics
November 2024
Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Methods Mol Biol
November 2024
Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France.
The development of next-generation sequencing (NGS) approaches to investigate the functioning of RNA polymerases has led to groundbreaking advances in the field of transcriptional regulation. One powerful method, Precision nuclear Run-On sequencing (PRO-seq), maps the locations of RNA polymerase active sites genome-wide at high resolution. PRO-seq provides a snapshot of strand-specific transcriptional activity and does not rely on immunoprecipitation of the polymerase of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!