Experimental demonstration of classical analogous time-dependent superposition of states.

Sci Rep

Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA.

Published: December 2022

One of the quantum theory concepts on which quantum information processing stands is superposition. Here we provide experimental evidence for the existence of classical analogues to the coherent superposition of energy states, which is made possible by the Hertz-type nonlinearity of the granules together with the external driving field. The granules' nonlinear vibrations are projected into the linear modes of vibration, which depend on one another through the phase and form a coherent superposition. We show that the amplitudes of the coherent states form the components of a state vector that spans a two-dimensional Hilbert space, and time enables the system to span its Hilbert space parametrically. Thus, the superposition of states can be exploited in two-state quantum-like computations without decoherence and wave function collapse. Finally, we demonstrate the experimental realization of applying a reversible Hadamard gate to a pure base state that brings the state into a superposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803682PMC
http://dx.doi.org/10.1038/s41598-022-27239-yDOI Listing

Publication Analysis

Top Keywords

superposition states
8
coherent superposition
8
hilbert space
8
superposition
6
experimental demonstration
4
demonstration classical
4
classical analogous
4
analogous time-dependent
4
time-dependent superposition
4
states
4

Similar Publications

Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

Polarization ellipses are well-known as the result of coherent superposition of photonic spin states. As orbital counterparts, in this Letter, we introduce centroid ellipses that are geometrically mapped from optical orbital angular momentum (OAM) superpositions on a modal Poincaré sphere (PS) by coaxial interference. Different from not easily observable polarization ellipses, these centroid ellipses can be directly observed from dynamical interferograms with broken rotational symmetry.

View Article and Find Full Text PDF

An operational distinction between quantum entanglement and classical non-separability.

Philos Trans A Math Phys Eng Sci

December 2024

Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, Erlangen 91058, Germany.

Quantum entanglement describes superposition states in multi-dimensional systems-at least two partite-which cannot be factorized and are thus non-separable. Non-separable states also exist in classical theories involving vector spaces. In both cases, it is possible to violate a Bell-like inequality.

View Article and Find Full Text PDF

Interplay Between Spinmerism and Spin-Orbit Coupling for a d2 Metal Ion in an Open-Shell Ligand Field.

Chemphyschem

December 2024

Laboratoire de Chimie Quantique, Universit� de Strasbourg, Department of Chemistry, 4 rue Blaise Pascal, 67000, Strasbourg, FRANCE.

Recent, theoretical studies have shown that placing a spin-crossover ion in a field of radical ligands can induce local superpositions of local spin states (see Ref.[1,2]). This phenomenon, termed spinmerism, raises questions about its stability when spin-orbit coupling is included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!