Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aim: Prostate cancer (PCa) is one of the most common malignancies in adult men. LQB-118 is a pterocarpanquinone with antitumor activity toward prostate cancer cells. It inhibits cell proliferation by down-regulating cyclins D1 and B1 and up-regulating p21. However, the effects of LQB-118 on PCa cell migration are still unclear. Herein, the LQB-118 effects on PCa metastatic cell migration/invasion and its mechanism of action were evaluated.
Materials And Methods: PC3 cells were treated with LQB-118 or Paclitaxel (PTX), and cell migration (wound healing and Boyden chamber assays) and invasion (matrigel assay) were determined. The LQB-118 mechanisms were evaluated by αVβIII protein expression (flow cytometry), protein phosphorylation (Western blot), and mRNA expression (qPCR).
Results: LQB-118 impaired PCa cell migration and invasion, down-regulated Akt phosphorylation, and also reduced GSK3β phosphorylation, through a FAK-independent pathway. Also, it was observed that LQB-118 controlled the invasiveness behavior by reducing matrix metalloproteinase-9 (MMP-9) and up-regulating reversion-inducing cysteine rich protein with Kazal motifs (Reck) mRNA levels. Interestingly, LQB-118 increased integrin αβ expression, but this effect was not related to its activation, since the cell adhesion ability was reduced after LQB-118 treatment.
Conclusion: These data highlight novel LQB-118 mechanisms in prostate cancer cells. LQB-118 acts as a negative regulator of the Akt/GSK3 signaling pathway and can modulate PCa cell proliferation, death, and migration/invasion. The results also support the use of LQB-118 for the treatment of metastatic PCa, alone or combined with another chemotherapeutic agent, due to its demonstrated pleiotropic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.16171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!