A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. | LitMetric

Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.161219DOI Listing

Publication Analysis

Top Keywords

positively correlated
12
long-term assessment
8
full-scale integrated
8
integrated multiple
8
operating parameters
8
efficient sustainable
8
sustainable long-term
8
long-term operation
8
removal rate
8
cod positively
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!