Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet. Many molecular machines undergo three major steps throughout their functional cycles, including initialization, repetitive processing, and termination. Several of these major states have been elucidated by cryogenic electron microscopy (cryo-EM). However, the individual steps for these machines are unique and multistep processes themselves, and their coordination in time is still elusive. To measure these short-lived intermediate events by cryo-EM, the total reaction time needs to be shortened to enrich for the respective pre-equilibrium states. This approach is termed time-resolved cryo-EM (trEM). In this review, we sum up the methodological development of trEM and its application to a range of biological questions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825670 | PMC |
http://dx.doi.org/10.1016/j.str.2022.11.014 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
Broadly neutralizing antibodies (bNAbs) could offer escape-tolerant and lasting protection against viral infections and therefore guide development of broad-spectrum vaccines. The increasing challenge posed by viral evolution and immune evasion intensifies the importance of the discovery of bNAbs and their underlying neutralization mechanism. Here, focusing on the pivotal viral protein VP4 of rotavirus (RV), we identify a potent bNAb, 7H13, exhibiting broad-spectrum neutralization across diverse RV genotypes and demonstrating strong prevention of virus infection in female mice.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.
Independent methods show that sub-microMolar concentrations of perfluorooctanoic acid (PFOA), a member of the PFAS family of "forever chemicals", change the properties of DPPC vesicle bilayers. Specifically, calorimetry measurements show that PFOA at concentrations as low as 0.1 nM lowers DPPC's gel-liquid crystalline transition enthalpy by several J/g without changing the transition temperature (), and dynamic light scattering (DLS) data illustrate that PFOA markedly broadens the size distribution of DPPC vesicles.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032.
Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
Investigating nanoscale structural variations, including heterogeneities, defects, and interfacial characteristics, is crucial for gaining insight into material properties and functionalities. Cryogenic electron microscopy (cryo-EM) is developing as a powerful tool in materials science particularly for non-invasively understanding nanoscale structures of materials. These advancements bring us closer to the ultimate goal of correlating nanoscale structures to bulk functional outcomes.
View Article and Find Full Text PDFThis study examines the validity of an assay that is used to report on the retainment of functional competence by ribosomes as they pass a micro-sprayer. We find a reproducible , rather than the expected in GFP production as monitored by fluorescence, which suggests heterogeneity or partial aggregation of ribosomes in solution. An even larger increase in functional activity is observed when sonication is used, pointing to mechanical agitation as the decisive factor in both scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!