Multimodal MR brain tumor segmentation is one of the hottest issues in the community of medical image processing. However, acquiring the complete set of MR modalities is not always possible in clinical practice, due to the acquisition protocols, image corruption, scanner availability, scanning cost or allergies to certain contrast materials. The missing information can cause some restraints to brain tumor diagnosis, monitoring, treatment planning and prognosis. Thus, it is highly desirable to develop brain tumor segmentation methods to address the missing modalities problem. Based on the recent advancements, in this review, we provide a detailed analysis of the missing modality issue in MR-based brain tumor segmentation. First, we briefly introduce the biomedical background concerning brain tumor, MR imaging techniques, and the current challenges in brain tumor segmentation. Then, we provide a taxonomy of the state-of-the-art methods with five categories, namely, image synthesis-based method, latent feature space-based model, multi-source correlation-based method, knowledge distillation-based method, and domain adaptation-based method. In addition, the principles, architectures, benefits and limitations are elaborated in each method. Following that, the corresponding datasets and widely used evaluation metrics are described. Finally, we analyze the current challenges and provide a prospect for future development trends. This review aims to provide readers with a thorough knowledge of the recent contributions in the field of brain tumor segmentation with missing modalities and suggest potential future directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2022.102167 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, Fl, 33136, USA.
Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First People's Hospital of Changzhou, Jiangsu Province, Changzhou 213000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!