The aim of this research was to develop a sustainable and ecologically sound, non-traditional cold mix asphalt (CMA) that can be used in the construction industry. This new type of CMA incorporates wastewater sludge fly ash (UFA) and bottom ash (UBA) as a replacement filler for ordinary Portland cement and limestone. Silica fume (SF) was also used as an additional filler. The mechanical and durability characteristics of the new CMAs were examined in terms of indirect tensile stiffness modulus (ITSM), and rutting, fatigue, water and fuel resistance. The results showed that CMA with 2.1% OPC +3.9% UFA at 3 days of age, had ITSM values 11 times that of traditional CMA, while CMA with 2.1% OPC+ 3.3% UFA +0.6% UBA, had ITSM values 5 times that of traditional CMA at 28 days of age. SF activated hydration for both mixes, significantly increasing ITSM. These results indicate that CMA has a comparable mechanical performance to standard Hot Mix Asphalt (HMA) mixtures for use as surface pavement layers. This study offers a novel CMA with improved mechanical performance. It is economically effective and ecologically beneficial, compared to HMA, due to its ability to accommodate wastewater sludge ashes that are often disposed of in landfill sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117015 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFACS Omega
December 2024
Norin Mining Limited, Beijing 100053, China.
With the continuous exploitation of global mineral resources, backfill technology for gob areas has become a crucial aspect of mine safety and sustainable development. As a primary method of gob area backfill, slurry backfill directly relates its flow properties and filling height to the efficiency and safety of mine extraction. To enhance the flow properties of the slurry and increase its filling height, a research study on the flow and deposition characteristics of a gas-containing filling slurry was conducted using a combination of theoretical analysis, laboratory experiments, and field tests.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland.
This study articulates findings from research pertaining to the utilisation of recycled geogrid in asphalt concrete. The issue of contamination of reclaimed waste with geosynthetic materials persists as a significant concern that warrants attention. In Poland, the allowable quantity of geogrid contaminants within the mineral-asphalt composition is 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 Street, 20-618 Lublin, Poland.
In recent years, global climate change has caused worldwide trends in science and industry toward a focus on the development of modern technologies with reduced environmental impact, including reduced CO emissions into the atmosphere. The technology for producing asphalt mixtures (AM) at lower temperatures (WMA-warm asphalt mix) using zeolite materials for the bitumen foaming process fits perfectly into these trends. Therefore, towards the development of this technology, the research presented in this paper presents the modification process of zeolite NaP1 from fly ash with silanes of different chemical structures (TEOS, MPTS, TESPT) and their application in the foaming process of bitumen modified with polymers (PMB 45/80-55).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 12 Avenue, 35-959 Rzeszow, Poland.
This paper presents the properties of an SMA LA (stone matrix asphalt Lärmarmer) mixture based on the polymer-modified binder PMB 45/80-55, formed by the addition of zeolites (synthetic zeolite type Na-P1 and natural zeolite-clinoptilolite). The compositions of the SMA 11, SMA 8 LA and SMA 11 LA mixtures based on modified bitumen with PMB 45/80-55 (reference mixture) or PMB 45/80-55 with Na-P1 or clinoptilolite were determined. Their resistance to permanent deformation, water sensitivity, water permeability and susceptibility to changes in texture and skid resistance during the period of use were verified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!