Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinoptilolite based zeolite-geopolymer foams (abbreviated as CFs) were prepared from natural clinoptilolite and calcined clinoptilolite, using HO solution as pore former through a straightforward process. Natural clinoptilolite and CFs are characterized by analytical techniques including optical microscope, XRF, FTIR, XRD, BET, MIP and SEM. The obtained CFs possesses micropores of zeolite and meso/macropores of geopolymer matrix. The porosities range from 66.7 to 69.5%. Clinoptilolite (partially dissolved) and impurity minerals (montmorillonite, illite and albite) contribute to the formation of geopolymer. CFs shows a good static sorption performance for toxic heavy metals at pH = 5 and sorption time of 24 h. Results show that the adsorption amount of CFs for Cr, Pb, Ni, Cu and Cd in the 50 mg/L working solutions are 6.21 mg/g, 6.11-6.13 mg/g, 5.92-6.07 mg/g, 5.53-5.93 mg/g and 5.44-5.79 mg/g, respectively. In addition, CFs could reach a high removal rate (Cr removal rate >80% and Cd > 60%) for different heavy metals after three cycles. The elimination order of toxic metals is Cr > Pb > Ni > Cu > Cd. The sequence is in accordance with Hard-Soft-Acid-Base principle, it is also related to the speciation and the ionic radii of the hydrated metal ions. This research provides a feasible approach for preparation of promising foams sorbent based on natural zeolite for wastewater management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!