. As part of image-guided radiotherapy, ultrasound-guided radiotherapy is currently already in use and under investigation for robot assisted systems Ipsen 2021. It promises a real-time tumor localization during irradiation (intrafractional) without extra dose. The ultrasound probe is held and guided by a robot. However, there is a lack of basic safety mechanisms and interaction strategies to enable a safe clinical procedure. In this study we investigate potential positioning strategies with safety mechanisms for a safe robot-human-interaction.. A compact setup of ultrasound device, lightweight robot, tracking camera, force sensor and control computer were integrated in a software application to represent a potential USgRT setup. For the realization of a clinical procedure, positioning strategies for the ultrasound head with the help of the robot were developed, implemented, and tested. In addition, basic safety mechanisms for the robot have been implemented, using the integrated force sensor, and have been tested by intentional collisions.. Various positioning methods from manual guidance to completely automated procedures were tested. Robot-guided methods achieved higher positioning accuracy and were faster in execution compared to conventional hand-guided methods. The developed safety mechanisms worked as intended and the detected collision force were below 20 N.. The study demonstrates the feasibility of a new approach for safe robotic ultrasound imaging, with a focus on abdominal usage (liver, prostate, kidney). The safety measures applied here can be extended to other human-robot interactions and present the basic for further studies in medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/acaf46DOI Listing

Publication Analysis

Top Keywords

safety mechanisms
16
ultrasound probe
8
basic safety
8
clinical procedure
8
positioning strategies
8
force sensor
8
ultrasound
6
positioning
5
robot
5
safety
5

Similar Publications

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

Pemphigus and Bullous Pemphigoid Following COVID-19 Vaccination: A Systematic Review.

Viruses

December 2024

Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy.

The COVID-19 pandemic has encouraged the rapid development and licensing of vaccines against SARS-CoV-2. Currently, numerous vaccines are available on a global scale and are based on different mechanisms of action, including mRNA technology, viral vectors, inactive viruses, and subunit particles. Mass vaccination conducted worldwide has highlighted the potential development of side effects, including ones with skin involvement.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses.

View Article and Find Full Text PDF

Influenza poses a significant global health challenge due to its rapid mutation and antigenic variability, which often leads to seasonal epidemics and frequent outbreaks. Traditional vaccines struggle to offer comprehensive protection because of mismatches with circulating viral strains. The development of a broad-spectrum vaccine is therefore crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!