Objective: Type 2 diabetes mellitus(T2DM) is closely related to sarcopenic obesity(SO). Body composition measurement including body weight, body mass index, waist circumference, percentage body fat, fat mass, muscle mass, visceral adipose tissue and subcutaneus adipose tissue, plays a key role in evaluating T2DM and SO. The weight reduction effect of sodium-glucose cotransporter 2(SGLT-2) inhibitors has been demonstrated. However, there are warnings that SGLT-2 inhibitors should be used with caution because they may increase the risk of sarcopenia. The effect of SGLT-2 inhibitors on body composition in T2DM is inconclusive. In this work, a meta-analysis of randomized controlled trials was conducted to evaluate the effect of SGLT-2 inhibitors on body composition in T2DM.
Methods: PubMed, the Cochrane Library, EMbase and Web of Science databases were searched by computer. All statistical analyses were carried out with Review Manager version 5. 3. Results were compared by weight mean difference(WMD), with 95% confidence intervals(CI) for continuous outcomes. A random effects model was applied regardless of heterogeneity. The I2 statistic was applied to evaluate the heterogeneity of studies. Publication bias was assessed using Funnel plots.
Results: 18 studies with 1430 participants were eligible for the meta-analysis. SGLT-2 inhibitors significantly reduced body weight(WMD:-2. 73kg, 95%CI: -3. 32 to -2. 13, p<0. 00001), body mass index(WMD:-1. 13kg/m2, 95%CI: -1. 77 to -0. 50, p = 0. 0005), waist circumference(WMD:-2. 20cm, 95%CI: -3. 81 to -0. 58, p = 0. 008), visceral fat area(MD:-14. 79cm2, 95%CI: -24. 65 to -4. 93, p = 0. 003), subcutaneous fat area(WMD:-23. 27cm2, 95% CI:-46. 44 to -0. 11, P = 0. 05), fat mass(WMD:-1. 16kg, 95%CI: -2. 01 to -0. 31, p = 0. 008), percentage body fat(WMD:-1. 50%, 95%CI:-2. 12 to -0. 87, P<0. 00001), lean mass(WMD:-0. 76kg, 95%CI:-1. 53 to 0. 01, P = 0. 05) and skeletal muscle mass(WMD:-1. 01kg, 95%CI:-1. 91 to -0. 11, P = 0. 03).
Conclusion: SGLT-2 inhibitors improve body composition in T2DM including body weight, body mass index, waist circumference, visceral fat area, subcutaneous fat area, percentage body fat and fat mass reduction, but cause adverse effects of reducing muscle mass. Therefore, until more evidence is obtained to support that SGLT-2 inhibitors increase the risk of sarcopenia, not only the benefit on body composition, but also the adverse effect of the reduction in muscle mass by SGLT-2 inhibitors in T2DM should be considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803203 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279889 | PLOS |
Curr Diab Rep
January 2025
Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC-UBA), Buenos Aires, Argentina.
Purpose Of Review: This article explores the cardiovascular effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM), with a particular focus on their impact on lipid profiles. As evidence grows of the cardiovascular benefits of SGLT2i beyond glucose control, it is essential to better understand their effects on lipoproteins and their impact on cardiovascular disease.
Recent Findings: SGLT2i have shown significant cardiovascular benefits in patients with type 2 diabetes mellitus, beyond their role in lowering blood glucose.
Transl Res
January 2025
Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated.
View Article and Find Full Text PDFDiabetes Ther
January 2025
Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
Type 1 diabetes is associated with excess cardiovascular risk, even after accounting for traditional cardiovascular risk factors, including glycaemia. Hence, there is an urgent need to document the metabolic abnormalities that contribute to the cardiovascular mortality gap in type 1 diabetes, and to examine whether cardioprotective type 2 diabetes medications prevent premature morbidity and mortality in this population.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia.
Aims: Heart failure with improved ejection fraction (HFimpEF) patients could still develop adverse outcomes despite EF improvement. This study evaluates the risk and protective factors of poor clinical outcomes in HFimpEF patients.
Methods: Systematic searching was done to include studies that evaluate the risks of developing poor outcomes in HFimpEF patients.
Front Clin Diabetes Healthc
December 2024
Department of Basic Sciences, College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah, Saudi Arabia.
Background: Complications of diabetes and its associated comorbidities can cause rapid progression of type II diabetes mellitus (T2DM). It comes at high costs and affects a patient's quality of life. We aim to assess T2DM in KSA, including the demographics, medications, complications, and comorbidities, as it remains an integral part of Vision 2030.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!