Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cytomegalovirus (CMV) infection can have both direct and indirect effects after solid-organ transplantation, with a significant impact on transplant outcomes. Prevention strategies decrease the risk of CMV disease, although CMV still occurs in up to 50% of high-risk patients. Ganciclovir (GCV) and valganciclovir (VGCV) are the main drugs currently used for preventing and treating CMV. Emerging data suggest that letermovir is as effective as VGCV with fewer hematological side effects. Refractory and resistant CMV also still occur in solid-organ-transplant patients. Maribavir has been shown to be effective and have less toxicity in the treatment of refractory and resistant CMV. In this review paper, we discuss prevention strategies, refractory and resistant CMV, and drug-related side effects and their impact, as well as optimal use of novel anti-CMV therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925645 | PMC |
http://dx.doi.org/10.1007/s40121-022-00746-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!