Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Preoperative diagnosis of liver fibrosis in children with pancreaticobiliary maljunction (PBM) is needed to guide clinical decision-making and improve patient prognosis.
Purpose: To develop and validate an MR-based radiomics-clinical nomogram for identifying liver fibrosis in children with PBM.
Study Type: Retrospective.
Population: A total of 136 patients with PBM from two centers (center A: 111 patients; center B: 25 patients). Cases from center A were randomly divided into training (74 patients) and internal validation (37 patients) sets. Cases from center B were assigned to the external validation set. Liver fibrosis was determined by histopathological examination.
Field Strength/sequence: A 3.0 T (two vendors)/T1-weighted imaging and T2-weighted imaging.
Assessment: Clinical factors associated with liver fibrosis were evaluated. A total of 3562 radiomics features were extracted from segmented liver parenchyma. Maximum relevance minimum redundancy and least absolute shrinkage and selection operator were recruited to screen radiomics features. Based on the selected variables, multivariate logistic regression was used to construct the clinical model, radiomics model, and combined model. The combined model was visualized as a nomogram to show the impact of the radiomics signature and key clinical factors on the individual risk of developing liver fibrosis.
Statistical Tests: Mann-Whitney U and chi-squared tests were used to compare clinical factors. P < 0.05 was considered statistically significant in the final models.
Results: Two clinical factors and four radiomics features were selected as they were associated with liver fibrosis in the training (AUC, 0.723, 0.927), internal validation (AUC, 0.718, 0.885), and external validation (AUC, 0.737, 0.865) sets. The radiomics-clinical nomogram yielded the best performance in the training (AUC, 0.977), internal validation (AUC, 0.921), and external validation (AUC, 0.878) sets, with good calibration (P > 0.05).
Data Conclusion: Our radiomic-based nomogram is a noninvasive, accurate, and preoperative diagnostic tool that is able to detect liver fibrosis in PBM children.
Evidence Level: 3.
Technical Efficacy: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.28586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!