A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of polypropylene mesh degradation on tissue inflammatory reaction. | LitMetric

Influence of polypropylene mesh degradation on tissue inflammatory reaction.

J Biomed Mater Res A

Department of Biohybrid & Medical Textiles (BioTex), Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany.

Published: August 2023

Polypropylene degradation in vivo appears as mesh surface cracking and peeling. This aging process of the mesh, resulting in the lack of bio-stability, contradicts the requirement of biocompatibility. However, to date, it is still not clearly established how much this mesh degradation influences the local tissue response with subsequent clinical consequences. This study aims to find out whether mesh degradation is correlated with elevated inflammatory tissue reaction through analyzing 100 human PP meshes explanted from the pelvic floor. A degradation classification method, based on standard pathological H&E stained slides of the explanted mesh via light microscope, was developed to classify the mesh degradation into four classes (no, mild, moderate and severe degradation). The peri-filamentary tissue inflammatory reaction was analyzed by scoring the expression of the most common cell markers for the innate immune reaction: CD68 as marker for macrophage, CD86 for M1 subtype, CD163 for M2 subtype, CD3 for T-lymphocyte and CD15 for neutrophil granulocytes. The correlation between immune cell expression, degradation classification and time of implantation of the meshes are evaluated with Spearman-Rho-Test. Mesh degradation worsens significantly (p < .001) with longer time of implantation. The increasing tendency of CD68 expression by mesh with higher degradation class indicates that the number of macrophages increases with worsening mesh degradation. The significantly increased expression of CD163 and CD3 cell by severely degraded mesh demonstrate the increased number of M2 and T-Lymphocyte when mesh degradation becomes severe. None of the inflammatory cells show the usual declining expression with longer time of implantation. The result of this study suggests that the degradation of PP mesh results in an elevated local inflammatory reaction in female pelvic floor. A material with better bio-stability for mesh implant in pelvic floor is required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37494DOI Listing

Publication Analysis

Top Keywords

mesh degradation
20
degradation
9
mesh
8
tissue inflammatory
8
inflammatory reaction
8
degradation classification
8
influence polypropylene
4
polypropylene mesh
4
tissue
4
degradation tissue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!