Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
recently, pupil oscillations synchronized with steady visual stimuli were used as input for an interface. The proposed system, inspired by a brain-computer interface based on steady-state visual evoked potentials, does not require contact with the participant. However, the pupil oscillation mechanism limits the stimulus frequency to 2.5 Hz or less, making it hard to enhance the information transfer rate (ITR).here, we compared multiple conditions for stimulation to increase the ITR of the pupil vibration-based interface, which were called monocular-single, monocular-superposed, and binocular-independent conditions. The binocular-independent condition stimulates each eye at different frequencies respectively and mixes them by using the visual stereoscopic perception of users. The monocular-superposed condition stimulates both eyes by a mixed signal of two different frequencies. We selected the shape of the stimulation signal, evaluated the amount of spectral leakage in the monocular-superposed and binocular-independent conditions, and compared the power spectrum density at the stimulation frequency. Moreover, 5, 10, and 15 patterns of stimuli were classified in each condition.a square wave, which causes an efficient pupil response, was used as the stimulus. Spectral leakage at the beat frequency was higher in the monocular-superposed condition than in the binocular-independent one. The power spectral density of stimulus frequencies was greatest in the monocular-single condition. Finally, we could classify the 15-stimulus pattern, with ITRs of 14.4 (binocular-independent, using five frequencies), 14.5 (monocular-superimposed, using five frequencies), and 23.7 bits min(monocular-single, using 15 frequencies). There were no significant differences for the binocular-independent and monocular-superposed conditions.this paper shows a way to increase the number of stimuli that can be simultaneously displayed without decreasing ITR, even when only a small number of frequencies are available. This could lead to the provision of an interface based on pupil oscillation to a wider range of users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/acab31 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!