This review highlights recent insights into the epigenetic mechanism of salt-sensitive hypertension from the fetus to the elderly population, mainly focusing on the DNA methylation and histone modification-mediated regulation of hypertension-associated genes. Maternal malnutrition during pregnancy induces upregulation of (angiotensin receptor 1a) by aberrant DNA methylation, and increased AT1A activity in the hypothalamus develops prenatally programmed salt-sensitive hypertension through renal sympathetic overactivity. In addition, maternal lipopolysaccharide exposure during pregnancy induces upregulation of the gene through histone modification by H3K9me2 across generations, resulting in salt-induced activation of the Rac1-MR (mineralocorticoid receptor) pathway in the kidney and the development of salt-sensitive hypertension in F4 and F5 offspring. In mice, aberrant DNA methylation of the gene, which regulates aging-associated hypertension, decreases the circulating soluble Klotho levels, leading to activation of the vascular Wnt5a-RhoA pathway and vasoconstriction and development of salt-sensitive hypertension because of decreased renal blood flow. A detailed understanding of the environmentally-induced epigenetic modulations related to salt-induced hypertension could be promising for developing preventive and therapeutic approaches to hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.20588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!