Maintaining body temperature within a narrow range is vital for warm-blooded animals. In rodents, the preoptic area (POA) of the hypothalamus detects and regulates core body temperature. However, knowledge about the thermal regulation center in primates remains limited. Here, we show that activating a subpopulation of POA neurons by a chemogenetic strategy reliably induces hypothermia in anesthetized and freely moving macaques. Comprehensive monitoring of physiological parameters reveals that such hypothermia is accompanied by autonomic changes including a rise in heart rate, skeletal muscle activity, and correlated biomarkers in blood. Consistent with enhanced ambulatory movement during hypothermia, the animals show a full range of cold-defense behaviors. Resting-state fMRI confirms the chemogenetic activation of POA and charts a brain-wide network of thermoregulation. Altogether, our findings demonstrate the central regulation of body temperature in primates and pave the way for future application in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793322 | PMC |
http://dx.doi.org/10.1016/j.xinn.2022.100358 | DOI Listing |
Sci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFSci Rep
December 2024
School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.
View Article and Find Full Text PDFCryobiology
December 2024
Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
This study investigated the impact of multiple nerve block methods (local anesthesia, conventional radiofrequency thermocoagulation [CRF], and pulsed radiofrequency [PRF]) on thermoregulation. Focusing on hypothalamic function, the effects of local anesthesia, CRF, and PRF on central and peripheral temperatures were analyzed and compared. Our findings revealed that all three nerve block groups cause a decrease in central temperature, with the CRF group exhibiting the most pronounced effect.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!