Prior studies have demonstrated the beneficial effects of real-time data feedback (RTF) on athletic performance and motivation. Despite this evidence, the lack of practical means to implement RTF has hindered its widespread adoption. Recently, a smart-resisted sled push was developed to improve athletic power by utilizing electromagnetic motors as a resistance mechanism, coupled with an RTF display. Thirty healthy college-aged male football players were recruited in this randomized, crossover designed study to examine the efficacy of the RTF to improve power output. Participants were randomized into either group 1 (receiving RTF first then no RTF) or group 2 (receiving no RTF first then RTF) during six, 10-meter sled pushes with 3 min rest intervals. The first three pushes were set to an easier level (L1) and the last three were set to a resistance level twice that of the first three runs (L2). A one-month washout period was enforced. For trials 1-3 (L1) ( = 0.026, = -2.34, ES = -0.428) and 4-6 (L2) ( = 0.035, = -2.22, ES = -0.405), peak power output (the average peak power output over the course of trials 1-3 and 4-6) was greater in both groups when receiving RTF compared to no-RTF. These findings demonstrate the effectiveness of RTF in augmenting power output during performance training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762164 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!