Objective: To investigate whether low-normal left ventricular ejection fraction (LVEF) is associated with adverse outcomes in hypertrophic cardiomyopathy (HCM) and evaluate the incremental value of predictive power of LVEF in the conventional HCM sudden cardiac death (SCD)-risk model.

Methods: This retrospective study included 1858 patients with HCM from two tertiary hospitals between 2008 and 2019. We classified LVEF into three categories: preserved (60%), low normal (50%-60%) and reduced (<50%); there were 1399, 415, and 44 patients with preserved, low-normal, and reduced LVEF, respectively. The primary outcome was a composite of SCD, ventricular tachycardia/fibrillation and appropriate implantable cardioverter-defibrillator shocks. Secondary outcomes were hospitalisation for heart failure (HHF), cardiovascular death and all-cause death.

Results: During the median follow-up of 4.09 years, the primary outcomes occurred in 1.9%. HHF, cardiovascular death, and all-cause death occurred in 3.3%, 1.9%, and 5.3%, respectively. Reduced LVEF was an independent predictor of SCD/equivalent events (adjusted HR (aHR) 5.214, 95% CI 1.574 to 17.274, p=0.007), adding predictive value to the HCM risk-SCD model (net reclassification improvement 0.625). Compared with patients with HCM with preserved LVEF, those with low-normal and reduced LVEF had a higher risk of HHF (LVEF 50%-60%, aHR 2.457, 95% CI 1.423 to 4.241, p=0.001; LVEF <50%, aHR 7.937, 95% CI 3.315 to 19.002, p<0.001) and cardiovascular death (LVEF 50%-60%, aHR 2.641, 95% CI 1.314 to 5.309, p=0.006; LVEF <50%, aHR 5.405, 95% CI 1.530 to 19.092, p=0.009), whereas there was no significant association with all-cause death.

Conclusions: Low-normal LVEF was an independent predictor of HHF and cardiovascular death in patients with HCM.

Download full-text PDF

Source
http://dx.doi.org/10.1136/heartjnl-2022-321853DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
8
low-normal left
8
left ventricular
8
ventricular ejection
8
ejection fraction
8
prognosis patients
4
patients hypertrophic
4
cardiomyopathy low-normal
4
fraction objective
4
objective investigate
4

Similar Publications

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder characterized by structural and functional abnormalities. Current management strategies, such as medications and septal reduction therapies, have significant limitations and risks. Recently, cardiac myosin inhibitors (CMIs) like mavacamten and aficamten have shown promise as noninvasive treatment options.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a complex and heterogeneous cardiac disorder, often complicated by cardiogenic shock, a life-threatening condition marked by severe cardiac output failure. Managing cardiogenic shock in HCM patients presents unique challenges due to the distinct pathophysiology of the disease, which includes dynamic left ventricular outflow tract obstruction, diastolic dysfunction, and myocardial ischemia. This review discusses current and emerging therapeutic strategies tailored to address the complexities of HCM-associated cardiogenic shock and other diseases with similar pathophysiology that provoke left ventricular outflow tract obstruction.

View Article and Find Full Text PDF

Objective: Despite significant advances in understanding hypertrophic cardiomyopathy (HCM) in recent years, there is a need to improve risk stratification for patients at high risk of adverse outcomes. The relationship between inflammation and disease severity in HCM patients is known. Recently, a new inflammation parameter called the pan-immune inflammation value (PIV) has been introduced.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!