A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source. | LitMetric

In this study, cold atmospheric plasma (CAP) was explored as a novel advanced oxidation process (AOP) for water decontamination. Samples with high concentration aqueous solutions of Diclofenac sodium (DCF) and 4-Chlorobenzoic acid (pCBA) were treated by plasma systems. Atmospheric pressure plasma jets (APPJs) with a 1 pin-electrode and multi-needle electrodes (3 pins) configurations were used. The plasma generated using argon as working gas was touching a stationary liquid surface in the case of pin electrode-APPJ while for multi-needle electrodes-APPJ the liquid sample was flowing during treatment. In both configurations, a commercial RF power supply was used for plasma ignition. Measurement of electrical signals enabled precise determination of power delivered from the plasma to the sample. The optical emission spectroscopy (OES) of plasma confirmed the appearance of excited reactive species in the plasma, such as hydroxyl radicals and atomic oxygen which are considered to be key reactive species in AOPs for the degradation of organic pollutants. Treatments were conducted with two different volumes (5 mL and 250 mL) of contaminated water samples. The data acquired allowed calculation of degradation efficiency and energy yield for both plasma sources. When treated with pin-APPJ, almost complete degradation of 5 mL DCF occurred in 1 min with the initial concentration of 25 mg/L and 50 mg/L, whereas 5 mL pCBA almost degraded in 10 min at the initial concentration of 25 mg/L and 40 mg/L. The treatment results with multi-needle electrodes system confirmed that DCF almost completely degraded in 30 min and pCBA degraded about 24 % in 50 min. The maximum calculated energy yield for 50 % removal was 6465 mg/kWh after treatment of 250 mL of DCF aqueous solution utilizing the plasma recirculation technique. The measurements also provided an insight to the kinetics of DCF and pCBA degradation. Degradation products and pathways for DCF were determined using LC-MS measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.161194DOI Listing

Publication Analysis

Top Keywords

degraded min
12
plasma
11
4-chlorobenzoic acid
8
aqueous solution
8
cold atmospheric
8
atmospheric plasma
8
multi-needle electrodes
8
reactive species
8
energy yield
8
min initial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!