Fibrous filter made up of non-woven material was utilized in many industrial applications for increasing the collection efficiency and the quality factor. But there exists a competing effect among the fibre diameter, filtration efficiency, pressure drop, and sometime type of aerosol (liquid or solid) plays a crucial role in the performance of the fibrous filter. To avoid overdesigning of the filter along with better performance, optimum set of parameters are to be decided before the manufacturing process. In the current effort, the desirability approach and along with the "Response Surface Methodology (RSM)" were considered to optimize filtration efficiency and pressure drop simultaneously. In this perspective, the impact of Filtration velocity (v), Basis weight (φ), Particle diameter (dp), and Packing fraction (α) on filtration efficiency (η) and pressure drop (Pd) was studied. Based on the outcome, the predicted values lie within experimental data through smart agreement. The maximum percentage (%) error was only 3% and 6% filtration efficiency (η) and pressure drop (Pd), which determine the effectiveness of this useful model. The most dominant factor which affects the filtration efficiency (η) was found to be the Basis weight (φ), followed by packing fraction. However, in the case of pressure drop, the most dominant factors were filtration speed followed by the pachining fraction. Moreover, artificial neural network (ANN) models are developed for the prediction of filtration efficiency and pressure drop. The model accuracy has been estimated by calculating "Mean Square Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2)". Both models show promising results when compared with experimental data with the R2 value of 98.50-99.86. The optimized values of the maximum filtration efficiency and minimum pressure drop simultaneously were obtained for v = 5, φ = 59.60, dp = 52.23, α = 0.24 according to desirability approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137667 | DOI Listing |
Int J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:
A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.
View Article and Find Full Text PDFWater Res
January 2025
National Center for Public Health and Pharmacy, Albert Flórián Street 2-6., H-1097, Budapest, Hungary. Electronic address:
Riverbank filtration is a cost-effective and efficient method for drinking water production, using the natural filtration capacity of the river gravelbed. Removal efficiency for organic micropollutants (OMP) in field studies is generally calculated by comparing the concentrations measured in surface water and in the wells either on the same day or with a shift of fixed time interval, neither of which can account for the variability of surface water quality and travel time in the aquifer. The present study proposes a novel method based on travel time distribution determined by a numerical transport model with a hypothesis that it will provide more reliable estimate for OMP removal.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. Electronic address:
This study evaluated the inhalation of mask-derived materials by simulating real breathing conditions and examined how the amount of inhaled materials varies with breathing flow rate and duration. Three types of non-certified reusable masks and two types of certified disposable masks were selected. For each mask, five different hazardous materials were captured and analyzed in three replicates with two breathing flow rates of 30 L/min and 85 L/min and two breathing time combinations of 15 min and 60 min.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!