Acetyl-CoA synthase (ACS) is a central enzyme in the carbon and energy metabolism of certain anaerobic species of bacteria and archaea that catalyzes the direct synthesis and cleavage of the acetyl CC bond of acetyl-CoA by an unusual enzymatic mechanism of special interest for its use of organonickel intermediates. An FeS cluster associated with a proximal, reactive Ni and distal spectator Ni comprise the active site metal complex, known as the A cluster. Experimental and theoretical methods have uncovered much about the ACS mechanism, but have also opened new unanswered questions about the structure and reactivity of the A cluster in various intermediate forms. Here we report a method for large scale isolation of ACS with its A cluster in the acetylated state. Isolated acetyl-ACS and the two-electron reduced ACS, produced by acetyl-ACS reaction with CoA, were characterized by UV-visible and EPR spectroscopy. Reactivity with electron acceptors provided an assessment of the apparent E for two-electron reduction of the A cluster. The results help to distinguish between alternative electronic states of the reduced cluster, provide evidence for a role of the Fe/S cluster in catalysis, and offer an explanation of why one-electron reductive activation is observed for a reaction cycle involving 2-electron chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2022.112098 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
China University of Petroleum East China, State Key Laboratory of Heavy Oil Processing, 66 The Yangtze River West Road, 266580, Qingdao, CHINA.
The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst.
View Article and Find Full Text PDFMolecules
December 2024
School of Information Technology, Jiangsu Open University, Nanjing 210017, China.
With the rapid growth of the world population and economy, the greenhouse effect caused by CO emissions is becoming more and more serious. To achieve the "two-carbon" goal as soon as possible, the carbon dioxide reduction reaction is one of the most promising strategies due to its economic and environmental friendliness. As an analog of graphene, monolayer h-BN is considered to be a potential catalyst.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.
View Article and Find Full Text PDFNat Chem
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
Benzene reduction by molecular complexes remains an important synthetic challenge, requiring harsh reaction conditions involving group I metals. Reductions of benzene, to date, typically result in a loss of aromaticity, although the benzene tetra-anion, a 10π-electron system, has been calculated to be stable and aromatic. Due to the lack of sufficiently potent reductants, four-electron reduction of benzene usually requires the use of group I metals.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!