A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thymosin β4 and the anti-fibrotic switch. | LitMetric

Thymosin β4 and the anti-fibrotic switch.

Int Immunopharmacol

Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, United States.

Published: February 2023

Wound healing involves a rapid response to the injury by circulating cells, followed by inflammation with an influx of inflammatory cells that release various factors. Soon after, cellular proliferation begins to replace the damaged cells and extracellular matrix, and then tissue remodeling restores normal tissue function. Various factors can lead to pathological wound healing when excessive and irreversible connective tissue/extracellular matrix deposition occurs, resulting in fibrosis. The process is initiated when immune cells, such as macrophages, release soluble factors that stimulate fibroblasts. TGFβ is the most well-characterized macrophage derived pro-fibrotic mediator. Other soluble mediators of fibrosis include connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and interleukin 10 (IL-10). Thymosin β4 (Tβ4) has shown therapeutic benefit in preventing fibrosis/scarring in various animal models of fibrosis/scarring. The mechanism of action of Tβ4 appears related, in part, to a reduction in the inflammatory response, including a reduction in macrophage infiltration, decreased levels of TGFβ and IL-10, and reduced CTGF activation, resulting in both prevention of fibroblast conversion to myofibroblasts and production of normally aligned collagen fibers. The amino N-terminal end of Tβ4, SDKP (serine-aspartate-lysine-proline), appears to contain the majority of anti-fibrotic activity and has shown excellent efficacy in many animal models of fibrosis, including liver, lung, heart, and kidney fibrosis. Ac-SDKP not only prevents fibrosis but can reverse fibrosis. Unanswered questions and future directions will be presented with regard to therapeutic uses alone and in combination with already approved drugs for fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109628DOI Listing

Publication Analysis

Top Keywords

thymosin β4
8
wound healing
8
growth factor
8
animal models
8
fibrosis
7
β4 anti-fibrotic
4
anti-fibrotic switch
4
switch wound
4
healing involves
4
involves rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!