Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21-33 years) and older adults (53-73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2022.108677 | DOI Listing |
J Sci Food Agric
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA.
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.
Reprod Sci
January 2025
Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA.
The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin.
View Article and Find Full Text PDFJ Biomech
January 2025
Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Electronic address:
Traffic Inj Prev
January 2025
School of Intelligent Transportation and Engineering, Guangzhou Maritime University, Guangzhou, China.
Objective: The objective of this study was to assess drivers' visual search patterns and cognitive load during driving in curved tunnels. Specifically, we aimed to investigate how different curved tunnel geometries (tunnel radii, turning directions) and zones (entrance, middle, exit) influence drivers' saccadic eye movements. This understanding can inform the development of safer tunnel designs and driving guidelines.
View Article and Find Full Text PDFNeurourol Urodyn
January 2025
Department of Surgery, Division of Urology, Virginia Commonwealth University Health System, Richmond, Virginia, USA.
Introduction And Objective: Observable autonomous rhythmic changes in intravesical pressure, termed bladder wall micromotion, is a phenomenon that has been linked to urinary urgency, the key symptom in overactive bladder (OAB). However, the mechanism through which micromotion drives urinary urgency is poorly understood. In addition, micromotion is inherently difficult to study in human urodynamics due to challenges distinguishing it from normal cyclic physiologic processes such as pulse rate, breathing, rectal contractions, and ureteral jetting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!