Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Evaporation-induced self-assembly in colloidal droplets is a method for organising nanoparticles on substrates, with various resulting patterns. The coffee-ring pattern is among the most common ones, but its non-uniformity limits its applicability, which led to efforts for developing coffee-ring suppression strategies. Considering the wide applicability of ZnO and TiO nanoparticles, there is a high demand for practical means to deposit them as uniform films. Here, we present a simple approach for obtaining highly uniform thin films of ZnO and TiO nanoparticles by drop-coating in ambient conditions, without using surfactants or other surface chemistry modifications. Disc-like films were obtained via a restricted evaporation achieved by covering the droplets with a lid during drying, seconded by the relatively high sedimentation rate of these nanoparticles. To better understand the assembly mechanism, the influence of suspension concentration, type and temperature of the substrate, droplet volume, colloid type, and evaporation rate were studied. The method allows preparing disc-like nanoparticle films with a good control over their diameter and thickness, onto different kinds of substrates (glass, Si, polyethylene terephthalate, polystyrene). By fabricating both two-dimensional lattices and custom disc patterns we highlight the versatility of this drop-coating method and its potential for, e.g., automatized serial production processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.12.113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!