A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO nanoparticles. | LitMetric

Evaporation-induced self-assembly in colloidal droplets is a method for organising nanoparticles on substrates, with various resulting patterns. The coffee-ring pattern is among the most common ones, but its non-uniformity limits its applicability, which led to efforts for developing coffee-ring suppression strategies. Considering the wide applicability of ZnO and TiO nanoparticles, there is a high demand for practical means to deposit them as uniform films. Here, we present a simple approach for obtaining highly uniform thin films of ZnO and TiO nanoparticles by drop-coating in ambient conditions, without using surfactants or other surface chemistry modifications. Disc-like films were obtained via a restricted evaporation achieved by covering the droplets with a lid during drying, seconded by the relatively high sedimentation rate of these nanoparticles. To better understand the assembly mechanism, the influence of suspension concentration, type and temperature of the substrate, droplet volume, colloid type, and evaporation rate were studied. The method allows preparing disc-like nanoparticle films with a good control over their diameter and thickness, onto different kinds of substrates (glass, Si, polyethylene terephthalate, polystyrene). By fabricating both two-dimensional lattices and custom disc patterns we highlight the versatility of this drop-coating method and its potential for, e.g., automatized serial production processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.12.113DOI Listing

Publication Analysis

Top Keywords

zno tio
12
tio nanoparticles
12
simple approach
8
coffee-ring suppression
8
nanoparticles
5
approach coffee-ring
4
suppression yielding
4
yielding homogeneous
4
homogeneous drying
4
drying patterns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!