Regression learning is one of the long-standing problems in statistics, machine learning, and deep learning (DL). We show that writing this problem as a probabilistic expectation over (unknown) feature probabilities - thus increasing the number of unknown parameters and seemingly making the problem more complex-actually leads to its simplification, and allows incorporating the physical principle of entropy maximization. It helps decompose a very general setting of this learning problem (including discretization, feature selection, and learning multiple piece-wise linear regressions) into an iterative sequence of simple substeps, which are either analytically solvable or cheaply computable through an efficient second-order numerical solver with a sublinear cost scaling. This leads to the computationally cheap and robust non-DL second-order Sparse Probabilistic Approximation for Regression Task Analysis (SPARTAn) algorithm, that can be efficiently applied to problems with millions of feature dimensions on a commodity laptop, when the state-of-the-art learning tools would require supercomputers. SPARTAn is compared to a range of commonly used regression learning tools on synthetic problems and on the prediction of the El Niño Southern Oscillation, the dominant interannual mode of tropical climate variability. The obtained SPARTAn learners provide more predictive, sparse, and physically explainable data descriptions, clearly discerning the important role of ocean temperature variability at the thermocline in the equatorial Pacific. SPARTAn provides an easily interpretable description of the timescales by which these thermocline temperature features evolve and eventually express at the surface, thereby enabling enhanced predictability of the key drivers of the interannual climate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910478 | PMC |
http://dx.doi.org/10.1073/pnas.2214972120 | DOI Listing |
Sci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.
Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.
View Article and Find Full Text PDFSci Rep
December 2024
Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.
Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.
View Article and Find Full Text PDFSci Rep
December 2024
Imperial College London, London, UK.
Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!