By loading a small amount of cadmium acetate dihydrate on the zeolitic imidazolate framework-8 (ZIF-8), a hollow CdS-ZnS-ZIF-8 composite was facilely synthesized by rapid solid-phase grinding with thioacetamide. The evolution of the structure, composition, and photoelectrochemical properties was studied by a series of methods. When it was used as a photocatalyst, the hollow CdS-ZnS-ZIF-8 composite demonstrated a highly visible light response as well as a robust ability and reusability for Cr(VI) reduction, which could be ascribed to the hollow structure and ultrasmall CdS nanoparticles. Notably, the presence of ZIF-8-S (ZIF-8 ground with thioacetamide) could also obviously enhance the stability of CdS by promoting the separation of the photogenerated charge during light irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c04038 | DOI Listing |
Inorg Chem
January 2023
College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, China.
By loading a small amount of cadmium acetate dihydrate on the zeolitic imidazolate framework-8 (ZIF-8), a hollow CdS-ZnS-ZIF-8 composite was facilely synthesized by rapid solid-phase grinding with thioacetamide. The evolution of the structure, composition, and photoelectrochemical properties was studied by a series of methods. When it was used as a photocatalyst, the hollow CdS-ZnS-ZIF-8 composite demonstrated a highly visible light response as well as a robust ability and reusability for Cr(VI) reduction, which could be ascribed to the hollow structure and ultrasmall CdS nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!