Concentration-Dependent Viscoelasticity of Poloxamer-Shelled Microbubbles.

Langmuir

Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba263-8522, Japan.

Published: January 2023

The oscillation of shelled microbubbles during exposure to ultrasound is influenced by the mechanical properties of the shell components. The oscillation behavior of bubbles coated with various phospholipids and other amphiphiles has been studied. However, there have been few investigations of how the adsorption conditions of the shell molecules relate to the viscoelastic properties of the shell and influence the oscillation behavior of the bubbles. In the present study, we investigated the oscillation characteristics of microbubbles coated with a poloxamer surfactant, that is, Pluronic F-68, at several concentrations after the adsorption kinetics of the surfactant at the gas-water interface had reached equilibrium. The dilatational viscoelasticity of the shell during exposure to ultrasound was analyzed in the frequency domain from the attenuation characteristics of the acoustic pulses propagated in the bubble suspension. At Pluronic F-68 concentrations lower than 2.0 × 10 mol L, the attenuation characteristics typically exhibited a sharp peak. At concentrations higher than 2.0 × 10 mol L, the peak flattened. The dilatational elasticity and viscosity of the shell were estimated by fitting the theoretical model to the experimental values, which revealed that both the elasticity and viscosity increased markedly at approximately 2.0 × 10 mol L. This suggests that the adsorption properties of Pluronic F-68 strongly affect the oscillation characteristics of microbubbles of a size suitable for medical ultrasound diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02690DOI Listing

Publication Analysis

Top Keywords

pluronic f-68
12
exposure ultrasound
8
properties shell
8
oscillation behavior
8
behavior bubbles
8
oscillation characteristics
8
characteristics microbubbles
8
f-68 concentrations
8
attenuation characteristics
8
elasticity viscosity
8

Similar Publications

Optimizing voriconazole-loaded thermoresponsive hydrogel: tools and studies.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.

Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.

Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.

View Article and Find Full Text PDF

Anterior cervical spine surgeries are often complicated by difficulty swallowing due to local postoperative swelling, pain, scarring, and tissue dysfunction. These postoperative events lead to systemic steroid and narcotic use. Local, sustained drug delivery may address these problems, but current materials are unsafe for tight surgical spaces due to high biomaterial swelling, especially upon degradation.

View Article and Find Full Text PDF

The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.

View Article and Find Full Text PDF

Preparation of dried nanoemulsion formulation by electrospinning.

Eur J Pharm Sci

January 2025

University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:

Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface.

View Article and Find Full Text PDF

Background: Surgical site infections (SSIs) have been shown to increase patient morbidity and mortality, impact on quality of life and place a significant economic burden on healthcare systems worldwide. Irrigation using wound cleansing and antiseptic effective solutions during surgical procedures is a key part of SSI prevention. The optimal solution would have minimal cytotoxicity to the patient while maintaining a minimum concentration required for antimicrobial activity necessary to prevent opportunistic pathogens and biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!