Developing red thermally activated delayed fluorescence (TADF) emitters concurrently with high efficiency and emission color close to the BT.2020 red standard is an ongoing challenge. Herein, we developed a new red TADF emitter BCN-TPA, in which two identical donors are attached at the para-positions of one fused phenyl ring in the acceptor framework. Such an arrangement mode can lead the donors with an obvious superimposed effect comparing the conventional arrangement with edge-capped donors on the acceptor. Thus, BCN-TPA yields enhanced overall donor strength with numerous superiorities, such as high oscillator strength and narrow singlet-triplet energy difference, thus giving rise to red-shifted emission with improved overall exciton utilization. In an organic light-emitting diode, BCN-TPA presents efficient deep-red electroluminescence with a maximum external quantum efficiency of 27.6% and a peak at 656 nm, corresponding to CIE coordinates of (0.686, 0.304), which are very close to the red primary in the BT.2020 standard. To the best of our knowledge, this is one of the topmost efficiencies in the field of deep-red TADF OLEDs. This work exemplifies an easy design principle for constructing high-performance deep-red TADF emitters, providing unique molecular-level insights toward improving color quality and elevating efficiency based on conventional D-A type molecular frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!