The approval of larotrectinib and entrectinib for cancer patients harboring an NTRK gene fusion has represented a milestone in the era of "histology-agnostic" drugs. Among the clinical trials that led to the approval of these two drugs, most of the enrolled patients were affected by soft tissue sarcomas, lung, and salivary gland cancer. However, as next-generation sequencing assays are increasingly available in the clinical setting, health care professionals may be able to detect NTRK gene fusions in patients affected by tumor types under or not represented in the clinical trials. To this aim, we systematically reviewed MEDLINE from its inception to 31 August 2022 for case reports and case series on patients with NTRK gene fusion-positive tumors treated with TRK inhibitors. A virtual cohort of 43 patients was created, excluding those enrolled in the above-mentioned clinical trials. Although our results align with those existing in the literature, various cases of central nervous system tumors were registered in our cohort, confirming the benefit of these agents in this subgroup of patients. Large, multi-institutional registries are needed to provide more information about the efficacy of TRK inhibitors in cancer patients affected by tumor types under or not represented in the clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695027 | PMC |
http://dx.doi.org/10.3390/jpm12111819 | DOI Listing |
Eur J Med Chem
January 2025
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Tropomyosin receptor kinase (TRK) has emerged as a promising therapeutic target in cancers driven by NTRK gene fusions. Herein, we report a highly potent TRK inhibitor, C11, developed using bioisosteric replacement and computer-aided drug design (CADD) strategies. Compound C11 demonstrated significant antiproliferative effects against TRK-dependent cell lines (Km-12), and exhibited a dose-dependent inhibition of both colony formation and cell migration.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
Background: While immune checkpoint inhibitor (ICI) therapies can significantly improve outcomes for patients with recurrent/metastatic head and neck squamous cell carcinoma (RM-HNSCC), only about 15-20% benefit from such treatments. Clinical tests that guide the use of ICIs are therefore critically needed. OncoPrism-HNSCC was developed to address this need.
View Article and Find Full Text PDFJ Clin Transl Endocrinol
December 2024
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy.
Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.
View Article and Find Full Text PDFPathologica
October 2024
Department of Public Health, University of Naples Federico II, Naples, Italy.
Objective: ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations represent fundamental predictive biomarkers for advanced non-small cell lung cancer (NSCLC) patients to ensure the best treatment choice. In this scenario, RNA-based NGS approach has emerged as an extremely useful tool for detecting these alterations. In this study, we report our NGS molecular records on ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations detected by using a narrow RNA-based NGS panel, namely SiRe fusion.
View Article and Find Full Text PDFJ Natl Compr Canc Netw
December 2024
1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!