Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798036 | PMC |
http://dx.doi.org/10.7189/jogh.12.03089 | DOI Listing |
Biosensors (Basel)
November 2024
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices.
View Article and Find Full Text PDFPhotothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach.
View Article and Find Full Text PDFNanoscale
December 2024
Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Korea.
As a leading Pb-free perovskite material (ABO-type), potassium sodium niobate (K,Na)NbO (KNN)-based ferroelectrics/piezoelectrics have been widely used in electronics, energy conversion, and storage due to their exceptional ability to interconvert mechanical and electrical energies. Beyond traditional applications, the piezoelectric potential generated by mechanical strain or stress modifies their energy band structures and facilitates charge carrier separation and transport, drawing increasing attention in emerging fields such as piezocatalysis and photo-piezocatalysis. With excellent piezoelectric properties, chemical/thermal stability, and strain-tuning capability, KNN-based materials show great promise for high-performance piezocatalytic applications.
View Article and Find Full Text PDFNanoscale
December 2024
Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
Mathematically inspired structure design has emerged as a powerful approach for tailoring material properties, especially in nanoscale thermal transport, with promising applications both within this field and beyond. By employing mathematical principles, based on number theory, such as periodicity and quasi-periodic organizations, researchers have developed advanced structures with unique thermal behaviours. Although periodic phononic crystals have been extensively explored, various structural design methods based on alternative mathematical sequences have gained attention in recent years.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Neurodegenerative diseases (NDDs) represent a category of serious illnesses characterized by the progressive deterioration of neuronal structure and function. The exploration of natural compounds as potential therapeutic agents has gained increasing attention in recent years owing to their wide range of pharmacological activities and minimal side effects. Baicalin (BAI) and baicalein (BE), polyphenolic flavonoids, derived from the root of , evidently show potential in treating NDDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!