Acquiring a subterranean lifestyle entails a substantial shift for many aspects of terrestrial vertebrates' biology. Although this lifestyle is associated with multiple instances of convergent evolution, the relative success of some subterranean lineages largely remains unexplained. Here, we focus on the mammalian transitions to life underground, quantifying bone microanatomy through high-resolution X-ray tomography. The true moles stand out in this dataset. Examination of this family's bone histology reveals that the highly fossorial moles acquired a unique phenotype involving large amounts of compacted coarse cancellous bone. This phenotype exceeds the adaptive optimum seemingly shared by several other subterranean mammals and can be traced back to some of the first known members of the family. This remarkable microanatomy was acquired early in the history of the group and evolved faster than the gross morphology innovations of true moles' forelimb. This echoes the pattern described for other lifestyle transitions, such as the acquisition of bone mass specializations in secondarily aquatic tetrapods. Highly plastic traits-such as those pertaining to bone structure-are hence involved in the early stages of different types of lifestyle transitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783445 | PMC |
http://dx.doi.org/10.1002/evl3.303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!