Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The breast cosmetic outcome after breast conserving therapy is essential for evaluating breast treatment and determining patient's remedy selection. This prompts the need of objective and efficient methods for breast cosmesis evaluations. However, current evaluation methods rely on ratings from a small group of physicians or semi-automated pipelines, making the processes time-consuming and their results inconsistent. To solve the problem, in this study, we proposed: 1. a Machine Learning Breast Cosmetic evaluation algorithm leveraging the state-of-the-art Deep Learning algorithms for breast detection and contour annotation, 2. a novel set of Breast Cosmesis features, 3. a new Breast Cosmetic dataset consisting 3k+ images from three clinical trials with human annotations on both breast components and their cosmesis scores. We show our fully-automatic framework can achieve comparable performance to state-of-the-art without the need of human inputs, leading to a more objective, low-cost and scalable solution for breast cosmetic evaluation in breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794198 | PMC |
http://dx.doi.org/10.1016/j.mlwa.2022.100430 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!