Spinal muscular atrophy (SMA) is a rare genetic disease that results in progressive neuromuscular weakness. Without therapy, the most common form of the disease, type 1, typically results in death or chronic respiratory failure in the first 2 years of life. Thanks to the recent introduction of newborn screening programs and the discovery of three disease-modifying therapies in the last decade, the outcomes of children with SMA have dramatically improved. Patients are able to achieve many, if not all, of the typical neuromotor milestones, such as sitting, standing and walking, as well as safe oral intake. As the natural history of treated patients is continuously evolving, children with SMA continue to require complex and multidisciplinary care, posing implementation and sustainability challenges. Accordingly, there is a significant need for the application and evaluation of implementation science to address the steps involved in the diagnosis and treatment of patients with SMA, ensuring that all pertinent stakeholders and systems are working effectively to deliver timely and appropriate care. In this manuscript, we discuss the current challenges and gaps in the care for children with SMA, as well as how implementation science can advance this field. In addition, we provide an adapted implementation science framework that includes the main domains and subdomains involved in the care of patients with SMA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790909 | PMC |
http://dx.doi.org/10.3389/fneur.2022.1064194 | DOI Listing |
Gene Ther
January 2025
Departments of Pediatrics and Neurology, Emory University, Atlanta, 30322, Georgia.
Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics.
View Article and Find Full Text PDFBrain Dev
January 2025
Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China. Electronic address:
Background: Disease-modifying therapies can improve motor function in patients with spinal muscular atrophy (SMA), but efficacy varies between individuals. The aim was to evaluate the efficacy and safety of nusinersen treatment in children with SMA and to investigate prognostic factors.
Methods: Motor function, compound muscle action potential (CMAP), and other indicators were prospectively collected before and 14 months after nusinersen treatment.
Prog Rehabil Med
January 2025
Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan.
Objectives: Physical function assessments in patients with spinal muscular atrophy (SMA) are important indicators for assessing the effectiveness of treatment and changes over time in rehabilitation therapy. However, few reports exist on this indicator. This study calculated the minimal clinically important difference (MCID) for assessing motor function in the upper and lower limbs of individuals with SMA to estimate the degree of change within a functional score that is considered clinically meaningful.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.
View Article and Find Full Text PDFExtracranial arteriovenous malformations (eAVMs) are complex vascular lesions characterized by anomalous arteriovenous connections, vascular instability, and disruptions in endothelial cell (EC)-to-mural cell (MC) interactions. This study sought to determine whether eAVM-MCs could induce endothelial-to-mesenchymal transition (EndMT), a process known to disrupt vascular integrity, in the eAVM microenvironment. eAVM and paired control tissues were analyzed using RT-PCR for EC (, , and ) and EndMT-specific markers (, , , /.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!