Insights into the tumor microenvironment of B cell lymphoma.

J Exp Clin Cancer Res

Division of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.

Published: December 2022

The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798587PMC
http://dx.doi.org/10.1186/s13046-022-02579-9DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
cell lymphoma
8
lymphoma
5
tme
5
insights tumor
4
microenvironment cell
4
lymphoma standard
4
standard therapies
4
therapies lymphoma
4
lymphoma focused
4

Similar Publications

Role of Radiomics-based Multiomics Panel in the Microenvironment and Prognosis of Hepatocellular Carcinoma.

Acad Radiol

January 2025

Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen radiological Control Center, Xiamen 361102, Fujian, China (Z.W., J.G., Q.G., K.R.). Electronic address:

Hepatocellular carcinoma (HCC) is the most prevalent form of liver tumor, characterized by restricted therapeutic options and typically low long-term survival rates. Recently, immunotherapy has revolutionized HCC treatment, making the tumor microenvironment (TME) a research focus. Radiomics is increasingly crucial in HCC clinical decisions, offering advanced tools for TME characterization and prognosis assessment.

View Article and Find Full Text PDF

Exploring PANoptosis in head and neck cancer: A novel approach to cancer therapy.

Ecotoxicol Environ Saf

January 2025

Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China. Electronic address:

PANoptosis is a newly discovered complex programmed cell death (PCD) form. In the field of cancer research, PANoptosis is involved in multiple cell death pathways that affect tumor cell survival, proliferation, and response to treatment, serving as an innovative strategy for cancer therapy. Endocrine-disrupting chemicals (EDCs) impact the endocrine system, including cancer.

View Article and Find Full Text PDF

Bimetallic nanoreactor mediates cascade amplification of oxidative stress for complementary chemodynamic-immunotherapy of tumor.

Biomaterials

December 2024

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China. Electronic address:

As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze HO into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited HO and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, HO self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy.

View Article and Find Full Text PDF

With the advancement of medical technology, the utilization of bioactive materials to promote bone repair has emerged as a significant research area. Hydrogels, as biomaterials, play a crucial role in bone tissue engineering. These hydrogels exhibit high biocompatibility, providing in vivo ecological conditions conducive to cell survival, and offer substantial advantages in facilitating bone repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!