A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2.

BMC Med Inform Decis Mak

Research Laboratory Facility, Research and Innovation Department, Azienda Ospedaliera "SS Antonio e Biagio e Cesare Arrigo", Alessandria, Italy.

Published: December 2022

AI Article Synopsis

  • The study explored the use of explainable AI methods to enhance medical management for patients with complex diseases, specifically predicting death risk in hospitalized COVID-19 patients.
  • It involved an observational study of 824 patients, using data from electronic and paper records collected at a hospital in Italy, and trained 19 predictive models based on 43 features of patient data.
  • The JRIP model performed the best in identifying low-risk versus high-risk patients, showing comparable results to other methods while offering clear explanations for its predictions.

Article Abstract

Background: This study aimed to explore whether explainable Artificial Intelligence methods can be fruitfully used to improve the medical management of patients suffering from complex diseases, and in particular to predict the death risk in hospitalized patients with SARS-Cov-2 based on admission data.

Methods: This work is based on an observational ambispective study that comprised patients older than 18 years with a positive SARS-Cov-2 diagnosis that were admitted to the hospital Azienda Ospedaliera "SS Antonio e Biagio e Cesare Arrigo", Alessandria, Italy from February, 24 2020 to May, 31 2021, and that completed the disease treatment inside this structure. The patients'medical history, demographic, epidemiologic and clinical data were collected from the electronic medical records system and paper based medical records, entered and managed by the Clinical Study Coordinators using the REDCap electronic data capture tool patient chart. The dataset was used to train and to evaluate predictive ML models.

Results: We overall trained, analysed and evaluated 19 predictive models (both supervised and unsupervised) on data from 824 patients described by 43 features. We focused our attention on models that provide an explanation that is understandable and directly usable by domain experts, and compared the results against other classical machine learning approaches. Among the former, JRIP showed the best performance in 10-fold cross validation, and the best average performance in a further validation test using a different patient dataset from the beginning of the third COVID-19 wave. Moreover, JRIP showed comparable performances with other approaches that do not provide a clear and/or understandable explanation.

Conclusions: The ML supervised models showed to correctly discern between low-risk and high-risk patients, even when the medical disease context is complex and the list of features is limited to information available at admission time. Furthermore, the models demonstrated to reasonably perform on a dataset from the third COVID-19 wave that was not used in the training phase. Overall, these results are remarkable: (i) from a medical point of view, these models evaluate good predictions despite the possible differences entitled with different care protocols and the possible influence of other viral variants (i.e. delta variant); (ii) from the organizational point of view, they could be used to optimize the management of health-care path at the admission time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795955PMC
http://dx.doi.org/10.1186/s12911-022-02076-1DOI Listing

Publication Analysis

Top Keywords

machine learning
8
risk hospitalized
8
hospitalized patients
8
medical records
8
dataset third
8
third covid-19
8
covid-19 wave
8
admission time
8
point view
8
patients
6

Similar Publications

Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!