Background: The diagnostic yield of genetic testing for inherited cardiac diseases is up to 40% and is primarily indicated for screening of at-risk relatives. Here, we evaluate the role of genomics in diagnosis and management among consecutive individuals attending a specialised clinic and identify those with the highest likelihood of having a monogenic disease.
Methods: A retrospective audit of 1697 consecutive, unrelated probands referred to a specialised, multidisciplinary clinic between 2002 and 2020 was performed. A concordant clinical and genetic diagnosis was considered solved. Cases were classified as likely monogenic based on a score comprising a positive family history, young age at onset, and severe phenotype, whereas low-scoring cases were considered to have a likely complex aetiology. The impact of a genetic diagnosis was evaluated.
Results: A total of 888 probands fulfilled the inclusion criteria, and genetic testing identified likely pathogenic or pathogenic (LP/P) variants in 330 individuals (37%) and suspicious variants of uncertain significance (VUS) in 73 (8%). Research-focused efforts identified 46 (5%) variants, missed by conventional genetic testing. Where a variant was identified, this changed or clarified the final diagnosis in a clinically useful way for 51 (13%). The yield of suspicious VUS across ancestry groups ranged from 15 to 20%, compared to only 10% among Europeans. Even when the clinical diagnosis was uncertain, those with the most monogenic disease features had the greatest diagnostic yield from genetic testing.
Conclusions: Research-focused efforts can increase the diagnostic yield by up to 5%. Where a variant is identified, this will have clinical utility beyond family screening in 13%. We demonstrate the value of genomics in reaching an overall diagnosis and highlight inequities based on ancestry. Acknowledging our incomplete understanding of disease phenotypes, we propose a framework for prioritising likely monogenic cases to solve their underlying cause of disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795753 | PMC |
http://dx.doi.org/10.1186/s13073-022-01149-0 | DOI Listing |
BMC Pregnancy Childbirth
December 2024
Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, China.
Research Question: Is it possible to predict blastocyst quality, embryo chromosomal ploidy, and clinical pregnancy outcome after single embryo transfer from embryo developmental morphokinetic parameters?
Design: The morphokinetic parameters of 1011 blastocysts from 227 patients undergoing preimplantation genetic testing were examined. Correlations between the morphokinetic parameters and the quality of blastocysts, chromosomal ploidy, and clinical pregnancy outcomes following the transfer of single blastocysts were retrospectively analyzed.
Results: The morphokinetic parameters of embryos in the high-quality blastocyst group were significantly shorter than those in the low-quality blastocyst group (p < 0.
BMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFAm J Kidney Dis
December 2024
Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:
Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.
Study Design: Case series.
Genet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Clin Exp Ophthalmol
December 2024
Discipline of Ophthalmology and Visual Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!