Hypoxia and high accumulation of lactic acid in the tumor microenvironment provide fertile soil for tumor development, maintenance and metastasis. Herein, we developed a calcium peroxide (CaO)-loaded nanostructure that can play a role of "one stone kill two birds", i.e., acidic and hypoxic tumor microenvironment can be simultaneously regulated by CaO loaded nanostructure. Specifically, CaO-loaded mesoporous polydopamine nanoparticles modified with sodium hyaluronate (denoted as CaO@mPDA-SH) can gradually accumulate in a tumor site. CaO exposed in acidic microenvironment can succeed in consuming the lactic acid with oxygen generation simultaneously, which could remodel the acid and hypoxia tumor microenvironment. More importantly, the relief of hypoxia could further reduce lactate production from the source by down-regulating the hypoxia inducible factor-1α (HIF-1α), which further down-regulated the glycolysis associated enzymes including glycolysis-related glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). As a result, CaO@mPDA-SH alone without the employment of other therapeutics can dually regulate the tumor hypoxia and lactic acid metabolism, which efficiently represses tumor progression in promoting immune activation, antitumor metastasis, and anti-angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798656 | PMC |
http://dx.doi.org/10.1186/s12951-022-01752-8 | DOI Listing |
Neoplasma
December 2024
Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
Background: Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events.
View Article and Find Full Text PDFCancer Metastasis Rev
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
Gastric cancer (GC), a prevalent malignancy worldwide, encompasses a multitude of biological processes in its progression. Recently, ferroptosis, a novel mode of cell demise, has become a focal point in cancer research. The microenvironment of gastric cancer is composed of diverse cell populations, yet the specific gene expression profiles and their association with ferroptosis are not well understood.
View Article and Find Full Text PDFThe current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!