Discovered in 1819 in the tropical waters off Singapore, the magnificent Neptune's cup sponge Cliona patera (Hardwicke, 1820) was harvested for museums and collectors until it was presumed extinct worldwide for over a century since 1907. Recently in 2011, seven living individuals were rediscovered in Singapore with six relocated to a marine protected area in an effort to better monitor and protect the population, as well as to enhance external fertilisation success. To determine genetic diversity within the population, we sequenced the complete mitochondrial genomes and nuclear ribosomal DNA of these six individuals and found extremely limited variability in their genes. The low genetic diversity of this rediscovered population is confirmed by comparisons with close relatives of C. patera and could compromise the population's ability to recover from environmental and anthropogenic pressures associated with the highly urbanised coastlines of Singapore. This lack of resilience is compounded by severe predation which has been shrinking sponge sizes by up to 5.6% every month. Recovery of this highly endangered population may require ex situ approaches and crossbreeding with other populations, which are also rare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797562PMC
http://dx.doi.org/10.1038/s41598-022-26970-wDOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
low genetic
8
diversity predation
4
predation threaten
4
threaten rediscovered
4
rediscovered marine
4
marine sponge
4
sponge discovered
4
discovered 1819
4
1819 tropical
4

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.

View Article and Find Full Text PDF

Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.

View Article and Find Full Text PDF

Vibrio vulnificus is a significant zoonotic pathogen that causes severe vibriosis in humans and fish. The lack of a national annual surveillance program in China has hindered understanding of its epidemiological characteristics and genetic diversity. This study characterized 150 V.

View Article and Find Full Text PDF

Hotspots of genetic change in Yersinia pestis.

Nat Commun

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!