Glaucous (811, L35, and RXL10) and non-glaucous (811bw, L35bw, and RXL10bw) near-isogenic lines (NILs) of rye (Secale cereale L.) forming three pairs of inbred lines were the subject of the research. The research aimed to study the relationship between wax cover attributes and the physio-biochemical drought reactions and yield of rye NILs and to uncover the differences in drought resistance levels of these lines. The greatest differences between glaucous and non-glaucous NILs were observed in the RXL10/RXL10bw pair. Of particular note were the stable grain number and the thousand grain weight of the non-glaucous line RXL10bw under drought and the accompanying reactions, such as an approximately 60% increase in MDA and a two-fold increase in wax amount, both of which were significantly higher than in the glaucous line RXL10 and in other NILs. The surprisingly high level of MDA in the RXL10bw line requires further analysis. Moreover, additional wax crystal aggregates were found under drought conditions on the abaxial leaf surface of the glaucous lines 811 and RXL10. The use of rye NILs indicated that line-specific drought resistance could be associated with wax biosynthetic pathways involved in physiological and biochemical responses important for increased drought resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797576 | PMC |
http://dx.doi.org/10.1038/s41598-022-26869-6 | DOI Listing |
Front Plant Sci
December 2024
School of Life Science, Yantai University, Yantai, China.
In our previous study, three genes highly expressed in the roots of wheat were screened. To explore the effects of adverse stresses on the wheat root phenotype and the expression of , and , we measured the phenotypic parameters of the JM22 root system at the seedling stage after treatment with different concentrations of NaCl and PEG6000. Additionally, the relative expression levels of TaPSK3, TaPSK9, and TaPSK10 were analyzed via RT-qPCR within 72 h of treatment with 150 mM NaCl and 30% PEG6000.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China.
Chinese chestnut ( Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of genes in remain unknown.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!