Bioactivity of Dental Restorative Materials: FDI Policy Statement.

Int Dent J

Department of Biomedical Sciences and Comprehensive Care, Division of Dental Biomaterials, Indiana University School of Dentistry, IUPUI, Indianapolis, Indiana.

Published: February 2023

The term bioactivity is being increasingly used in medicine and dentistry. Due to its positive connotation, it is frequently utilised for advertising dental restorative materials. However, there is confusion about what the term means, and concerns have been raised about its potential overuse. Therefore, FDI decided to publish a Policy Statement about the bioactivity of dental restorative materials to clarify the term and provide some caveats for its use in advertising. Background information for this Policy Statement was taken from the current literature, mainly from the PubMed database and the internet. Bioactive restorative materials should have beneficial/desired effects. These effects should be local, intended, and nontoxic and should not interfere with a material's principal purpose, namely dental tissue replacement. Three mechanisms for the bioactivity of such materials have been identified: purely biological, mixed biological/chemical, or strictly chemical. Therefore, when the term bioactivity is used in an advertisement or in a description of a dental restorative material, scientific evidence (in vitro or in situ, and preferably in clinical studies) should be provided describing the mechanism of action, the duration of the effect (especially for materials releasing antibacterial substances), and the lack of significant adverse biological side effects (including the development and spread of antimicrobial resistance). Finally, it should be documented that the prime purpose, for instance, to be used to rebuild the form and function of lost tooth substance or lost teeth, is not impaired, as demonstrated by data from in vitro and clinical studies. The use of the term bioactive dental restorative material in material advertisement/information should be restricted to materials that fulfil all the requirements as described in the FDI Policy Statement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875272PMC
http://dx.doi.org/10.1016/j.identj.2022.11.012DOI Listing

Publication Analysis

Top Keywords

dental restorative
20
restorative materials
16
policy statement
16
bioactivity dental
8
fdi policy
8
term bioactivity
8
restorative material
8
clinical studies
8
materials
7
restorative
6

Similar Publications

Background: Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving . Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity.

View Article and Find Full Text PDF

CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

: Defects in maxillary and mandibular continuity are common in maxillofacial practice. They can occur after trauma, osteonecrosis, congenital jaw deformities, or surgical resection of benign or malignant tumours. Reconstruction with microvascular bone flaps and subsequent prosthetic rehabilitation is considered the contemporary first line treatment.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!