Elastic, anisotropic tissue such as tendon has proven resistant to mechanical fractionation by histotripsy, a subset of focused ultrasound that uses the creation, oscillation and collapse of cavitation bubbles to fractionate tissue. Our objective was to fabricate an optically transparent hydrogel that mimics tendon for evaluation of histotripsy bubble dynamics. Ex vivo bovine deep digital flexor tendons were obtained (n = 4), and varying formulations of polyacrylamide (PA), collagen and fibrin hydrogels (n = 3 each) were fabricated. Axial sound speeds were measured at 1 MHz for calculation of anisotropy. All samples were treated with a 1.5-MHz focused ultrasound transducer with 10-ms pulses repeated at 1 Hz (p = 127 MPa, p = 35 MPa); treatments were monitored with passive cavitation imaging and high-speed photography. Dehydrated fibrin gels were found to be the most similar to tendon in cavitation emission energy (fibrin = 0.69 ± 0.24, tendon = 0.64 ± 0.19 [× 10 V]) and anisotropy (fibrin = 3.16 ± 1.12, tendon = 19.4). Bubble cloud area in dehydrated fibrin (0.79 ± 0.14 mm) was significantly smaller than most other tested hydrogels. Finally, anisotropy was found to have moderately strong linear relationships with cavitation energy and bubble cloud size (r = -0.65 and -0.80, respectively). Dehydrated fibrin shows potential as a repeatable, transparent, tissue-mimicking hydrogel for evaluation of histotripsy bubble dynamics in elastic, anisotropic tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908827 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.11.012 | DOI Listing |
IEEE Trans Ultrason Ferroelectr Freq Control
October 2024
Nanodroplets are phase-changing agents that have shown great potential for ultrasound applications. When ultrasound is applied, nanodroplets can undergo a phase transition into gas bubbles, enabling cavitation that can be used to reduce the pressure threshold required for mechanical ablation of tissues. Effective tissue fractionation depends on precise vaporization to achieve uniform and predictable bubble formation.
View Article and Find Full Text PDFUltrasound Med Biol
December 2024
Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China. Electronic address:
Objective: Low-intensity histotripsy (LIH) is a novel and safe technique for tissue ablation. This study aimed to explore the effects of LIH on canine prostate tissue and identify the degree of acute injury to the gland.
Methods: We constructed and evaluated two types of acoustically responsive droplet (ARD) emulsions using either perfluoropentane (PFP) with a lipid shell or perfluoromethyl-cyclopentane (PFMCP) with lauromacrogol (L) injection.
Ann Biomed Eng
December 2024
Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA.
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells.
View Article and Find Full Text PDFUltrason Sonochem
October 2024
Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China. Electronic address:
Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound.
View Article and Find Full Text PDFUltrasound Med Biol
August 2024
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
Objective: Nanoparticle-mediated histotripsy (NMH) is a novel ablation method that combines nanoparticles as artificial cavitation nuclei with focused ultrasound pulsing to achieve targeted, non-invasive, and cell-selective tumor ablation. The study described here examined the effect of dual-frequency histotripsy pulsing on the cavitation threshold, bubble cloud characteristics, and ablative efficiency in NMH. High-speed optical imaging was used to analyze bubble cloud characteristics and to measure ablation efficiency for NMH inside agarose tissue phantoms containing perfluorohexane-filled nanocone clusters, which were previously developed to reduce the histotripsy cavitation threshold for NMH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!