Background: Timely trial start-up is a key determinant of trial success; however, delays during start-up are common and costly. Moreover, data on start-up metrics in pediatric clinical trials are sparse. To expedite trial start-up, the Trial Innovation Network piloted three novel mechanisms in the trial titled Dexmedetomidine Opioid Sparing Effect in Mechanically Ventilated Children (DOSE), a multi-site, randomized, double-blind, placebo-controlled trial in the pediatric intensive care setting.
Methods: The three novel start-up mechanisms included: 1) competitive activation; 2) use of trial start-up experts, called site navigators; and 3) supplemental funds earned for achieving pre-determined milestones. After sites were activated, they received a web-based survey to report perceptions of the DOSE start-up process. In addition to perceptions, metrics analyzed included milestones met, time to start-up, and subsequent enrollment of subjects.
Results: Twenty sites were selected for participation, with 19 sites being fully activated. Across activated sites, the median (quartile 1, quartile 3) time from receipt of regulatory documents to site activation was 82 days (68, 113). Sites reported that of the three novel mechanisms, the most motivating factor for expeditious activation was additional funding available for achieving start-up milestones, followed by site navigator assistance and then competitive site activation.
Conclusion: Study start-up is a critical time for the success of clinical trials, and innovative methods to minimize delays during start-up are needed. Milestone-based funds and site navigators were preferred mechanisms by sites participating in the DOSE study and may have contributed to the expeditious start-up timeline achieved.
Clinicaltrials: gov #: NCT03938857.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918704 | PMC |
http://dx.doi.org/10.1016/j.cct.2022.107067 | DOI Listing |
Foods
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Guangdong Ocean University (Yangjiang Campus), Yangjiang 529500, China.
This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, AlO/Cu composites, reinforced with AlO, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of AlO/Cu composites.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!