Multi-omics profiling visualizes dynamics of cardiac development and functions.

Cell Rep

State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211100, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China. Electronic address:

Published: December 2022

Cardiogenesis is a tightly regulated dynamic process through a continuum of differentiation and proliferation events. Key factors and pathways governing this process remain incompletely understood. Here, we investigate mice hearts from embryonic day 10.5 to postnatal week 8 and dissect developmental changes in phosphoproteome-, proteome-, metabolome-, and transcriptome-encompassing cardiogenesis and cardiac maturation. We identify mitogen-activated protein kinases as core kinases involved in transcriptional regulation by mediating the phosphorylation of chromatin remodeling proteins during early cardiogenesis. We construct the reciprocal regulatory network of transcription factors (TFs) and identify a series of TFs controlling early cardiogenesis involved in cycling-dependent proliferation. After birth, we identify cardiac resident macrophages with high arachidonic acid metabolism activities likely involved in the clearance of injured apoptotic cardiomyocytes. Together, our comprehensive multi-omics data offer a panoramic view of cardiac development and maturation that provides a resource for further in-depth functional exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.111891DOI Listing

Publication Analysis

Top Keywords

cardiac development
8
early cardiogenesis
8
multi-omics profiling
4
profiling visualizes
4
visualizes dynamics
4
cardiac
4
dynamics cardiac
4
development functions
4
cardiogenesis
4
functions cardiogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!