Insects and plants exhibit bactericidal properties through surface nanostructures, such as nanospikes, which physically kill bacteria without antibiotics or chemicals. This is a promising new avenue for achieving antibacterial surfaces. However, the existing methods for fabricating nanospikes are incapable of producing uniform nanostructures on a large scale and in a cost-effective manner. In this paper, a scalable nanofabrication method involving the application of nanosphere lithography and reactive ion etching for constructing nanospike surfaces is demonstrated. Low-cost silicon nanospikes with uniform spacing that were sized similarly to biological nanospikes on cicada wings with a 4-inch wafer scale were fabricated. The spacing, tip radius, and base diameter of the silicon nanospikes were controlled precisely by adjusting the nanosphere diameters, etching conditions, and diameter reduction. The bactericidal properties of the silicon nanospikes with 300 nm spacing were measured quantitatively using the standard viability plate count method; they killed E. coli cells with 59 % efficiency within 30 h. The antibacterial ability of the nanospike surface was further indicated by the morphological differences between bacteria observed in the scanning electron microscopic images as well as the live/dead stains of fluorescence signals. The fabrication process combined the advantages of both top-down and bottom-up methods and was a significant step toward affordable bio-inspired antibacterial surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.113092 | DOI Listing |
J Colloid Interface Sci
June 2024
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:
Planktonic bacterial presence in many industrial and environmental applications and personal health-care products is generally countered using antimicrobials. However, antimicrobial chemicals present an environmental threat, while emerging resistance reduces their efficacy. Suspended bacteria have no defense against mechanical attack.
View Article and Find Full Text PDFACS Nano
January 2024
School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.
View Article and Find Full Text PDFNat Commun
November 2023
School of Pharmacy, China Medical University, Shenyang, 110122, China.
The oral delivery of nano-drug delivery systems (Nano-DDS) remains a challenge. Taking inspirations from viruses, here we construct core-shell mesoporous silica nanoparticles (NPs, ~80 nm) with virus-like nanospikes (VSN) to simulate viral morphology, and further modified VSN with L-alanine (CVSN) to enable chiral recognition for functional bionics. By comparing with the solid silica NPs, mesoporous silica NPs and VSN, we demonstrate the delivery advantages of CVSN on overcoming intestinal sequential barriers in both animals and human via multiple biological processes.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2023
ZJUI Institute, International Campus, Zhejiang University, State Key laboratory of Fluidic Power & Mechanical Systems, Haining 314400, China; School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027 China. Electronic address:
Insects and plants exhibit bactericidal properties through surface nanostructures, such as nanospikes, which physically kill bacteria without antibiotics or chemicals. This is a promising new avenue for achieving antibacterial surfaces. However, the existing methods for fabricating nanospikes are incapable of producing uniform nanostructures on a large scale and in a cost-effective manner.
View Article and Find Full Text PDFMolecules
December 2022
Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA.
In this study, we electroplated Co and Cu on nano-spiked silicon substrates that were treated with femtosecond laser irradiations. With energy-dispersive X-ray (EDX) analysis by a scanning electron microscope (SEM), it was found that both Co and Cu are primarily coated on the spike surfaces without changing the morphology of the nanospikes. We also found that nanoscale bridges were formed, connecting the Co-coated silicon spikes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!