Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phellinus baumii extract (PBE) possesses considerable α-glucosidase-inhibited activity. This study investigated the hypoglycemic effect in vitro and in vivo using a glucose consumption assay in HepG2 cells, intragastric administration for ten weeks in STZ-induced mice, and intestinal flora fermentation in patients with type 2 diabetes to reveal the possible underlying mechanisms. PBE was prepared, including α-glucosidase-inhibited ethanol extract (EE) and aqueous extract (AE). In vitro, PBE promoted glucose consumption and enhanced glycogen content and hexokinase activity but lowered phosphoenolpyruvate carboxylase kinase activity in HepG2 cells. In vivo, PBE treatment significantly reduced the body weight (p < 0.05) and fasting blood glucose levels of diabetic mice (p < 0.01), with the lowest blood glucose level observed in the EE+AE group. Furthermore, the serum insulin levels and insulin resistance index (HOMA) of PBE-treated groups decreased significantly (p < 0.01). Moreover, gene expression levels of the IRS-1/PI3K/AKT pathway were significantly upregulated by PBE treatment (p < 0.01). In vitro fermentation demonstrated that EE significantly inhibited the production of HS and NH in the intestinal flora fermentation model in diabetic patients (p < 0.05). In addition, the ratio of Firmicutes to Bacteroidetes was reduced, the growth of Lactobacillus and Prevotella 9 was promoted, and Pseudomonas aeruginosa was inhibited. This study provides new insights and clues for using PBE as a functional food and clinical drug for glycemic control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.114130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!