Carnosic acid suppressed the formation of NETs in alcoholic hepatosteatosis based on P2X7R-NLRP3 axis.

Phytomedicine

Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin 133002, China. Electronic address:

Published: February 2023

Background: Alcoholic liver disease (ALD) is accompanied by a disruption of lipid metabolism and an inflammatory response in the liver during the process of disease. Carnosic acid (CA), a natural diterpene extracted from Rosmarinus officinalis (rosemary) and Salvia officinalis (sage), has more pharmacological activities, which is known to be useful in the treatment of obesity and acts by regulating energy metabolism. However, the role and regulation mechanism of CA against ALD remain unclear.

Hypothesis: We hypothesized that CA might improve alcoholic-induced hepatosteatosis.

Study Design And Methods: The alcoholic liver disease model was established a mouse chronic ethanol feeding by Lieber-DeCarli control liquid feed (10 d) plus a single binge with or without CA administration. AML12 cells were exposed to ethanol for 24 h. Murine peritoneal macrophages (MPM) were stimulated with LPS and ATP.

Results: CA ameliorated lipid accumulation in the liver of mice in the NIAAA model, acting by inhibiting the expression of genes related to lipid synthesis. CA reduced alcohol-induced immune cell infiltration in the liver, and inhibited the activation of P2X7R-NLRP3 inflammasome, meanwhile blocked the formation of NETs in mouse livers tissue. In AML12 cells, CA attenuated the lipid accumulation triggered by ethanol stimulation, which was achieved by inhibiting the expression of SREBP1 and CA reduced the release of inflammatory factor IL-1β by inhibiting the activation of P2X7R-NLRP3. In MPM, IL-1β and HMGB1 were reduced after LPS/ATP stimulation in CA-treated cells and supernatant.

Conclusions: CA attenuated alcohol-induced fat accumulation, suppressed the formation of NETs based on P2X7R-NLRP3 axis in mouse livers. Our data indicated that CA exerted hepatoprotective effects, which might be a promising candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154599DOI Listing

Publication Analysis

Top Keywords

formation nets
12
carnosic acid
8
suppressed formation
8
based p2x7r-nlrp3
8
p2x7r-nlrp3 axis
8
alcoholic liver
8
liver disease
8
aml12 cells
8
lipid accumulation
8
inhibiting expression
8

Similar Publications

Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.

View Article and Find Full Text PDF

A Neutrophil Extracellular Traps-Related Signature Predicts Clinical Outcomes and Identifies Immune Landscape in Ovarian Cancer.

J Cell Mol Med

December 2024

Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China.

Ovarian cancer (OvCa) is the most lethal gynaecology malignancies worldwide. Neutrophil extracellular traps (NETs), net-like protein structures produced by activated neutrophils and DNA-histone complexes, have a central role in tumours, though haven't been fully explored in OvCa. We obtained transcriptome data from TCGA-OvCa database (n = 376) as training, ICGC-OvCa database (n = 111) as validation and GTEx database (n = 180) as controls.

View Article and Find Full Text PDF

Neutrophil extracellular traps formation and autophagy in bongkrekic acid exposed human neutrophils.

Toxicol In Vitro

December 2024

School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China. Electronic address:

Bongkrekic acid (BKA), a less well-known foodborne toxin, has been implicated in numerous poisoning incidents. Recent studies suggest that BKA exerts an impact on the immune system, particularly on innate immunity. The release of neutrophil extracellular traps (NETs) is relatively a newly-discovered mechanism involving innate immunity.

View Article and Find Full Text PDF

Rhaponticin Alleviates Collagen-induced Arthritis by Inhibiting NLRP3/GSDMD-mediated Neutrophil Extracellular Traps.

Inflammation

December 2024

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.

Neutrophil extracellular traps (NETs) play an important role in the inflammatory response and progressive joint destruction in rheumatoid arthritis (RA). Rhaponticin (Rha) is a stilbene glycoside compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the therapeutic potential of Rha in RA, with a specific focus on its effects on NETs and on the underlying mechanisms of Rha.

View Article and Find Full Text PDF

O-antigen of uropathogenic Escherichia coli is required for induction of neutrophil extracellular traps.

J Microbiol Immunol Infect

December 2024

Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Background: Urinary tract infections (UTIs) are prevalent bacterial infection, with uropathogenic Escherichia coli (UPEC) as the primary causative agent. The outer membrane of UPEC contains a lipopolysaccharide (LPS), which plays crucial roles in the host's immune response to infection. Neutrophils use neutrophil extracellular traps (NETs) are mechanism by which neutrophils defend against bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!