Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis.

Plant Physiol Biochem

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, China; Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. Electronic address:

Published: January 2023

Phosphorus (P) is one of the principal macronutrients for plant growth and productivity. Although the phosphate (Pi) transporter (PT) of the PHT1 family has been functionally characterized as participating in Pi uptake and transport in plants, information about PT genes in stylo (Stylosanthes guianensis), an important tropical forage legume that exhibits good adaptability to low-P acid soils, is limited. In this study, stylo root growth was found to be stimulated under P deficiency. The responses of PT genes to nutrient deficiencies and their roles in Pi uptake were further investigated in stylo. Four novel PT genes were identified in stylo and designated SgPT2 to SgPT5. Like SgPT1, which had been previously identified, all five SgPT proteins harboured the major facilitator superfamily (MFS) domain. Variations in tissue-specific expression were observed among the SgPT genes, which displayed diverse responses to deficiencies in nitrogen (N), P and potassium (K) in stylo roots. Four of the five SgPTs exhibited high levels of transcriptional responsiveness to P deficiency in roots. Furthermore, SgPT1, a Pi-starvation-induced gene closely related to legume PT homologues that participate in Pi transport, was selected for functional analysis. SgPT1 was localized to the plasma membrane. Analysis of transgenic Arabidopsis showed that overexpression of SgPT1 led to increased Pi accumulation and promoted root growth in Arabidopsis plants. Taken together, the results of this study suggest the involvement of SgPTs in the stylo response to nutrient deprivation. SgPT1 might mediate Pi uptake in stylo, which is beneficial for root growth during P deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.12.021DOI Listing

Publication Analysis

Top Keywords

root growth
12
phosphate transporter
8
stylosanthes guianensis
8
stylo
7
sgpt1
6
genes
5
characterization phosphate
4
transporter genes
4
genes function
4
function sgpt1
4

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress.

Plant Physiol Biochem

December 2024

College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China. Electronic address:

Extreme conditions, such as cold and high humidity in northeast China's high-latitude maize region, can hinder crop yield and stability during the vegetative stage. However, there is a paucity of research examining the effects of simultaneous cold and high humidity stress on plant responses. In this study, we characterized the acclimation of JD558 (cold- and high humidity-sensitive hybrid) and JD441 (cold- and high humidity-tolerant hybrid) to stress at sowing caused by cold (4 °C), high humidity (25%), and their combined stress for five days, using physiological measurements and metabolomics during the stress treatments and recovery stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!